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Estimate 3D shape and pose even for partially occluded
object instances in monocular images.
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Contributions

e Explicit occluder representation for detailed 3D
object class models.

e Complete framework for detection and Geometric model Objective function formulation

reconstruction based on proven building blocks. ] _ Occlusin-aghostic model I) vs. Object detection accuracy of

N\ - T/ 1 m i t |
L . different 2D detectors
e 3D reasoning tightly coupled with 2D appearance @ C@ £(h)=ma } :(LZ Iy, ) our full system (r)
O—" O (h) & > L 0i(s, 0, a0) T

1 1 1 1 1 1 1 1 1
s S N - : e e - -
et i i P > 4 et MR 0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.3 0.9 1

matching. PEs) j=1 =1 _
g -2.701p1r\e /+2_701p1 Where ! FU” < 80% < 60%
Data set and source code @ T 8 () , T S, (s, Xj) dataset | visibility | visibility

o5 % L, =o0 '(S v (;L) log Total cars 165 96 48
| | | V \% v J ) N\ 0
e (Code, data, annotations being made public S(S,%;) Detected
L, (oj (s,0,a09) —o0;(s,0, a))c ,

http://www.igp.ethz.ch/photogrammetry/downloads —

_ _ o Def bl 3D wiref dal 0; (S’ 0. a) p , First-layer detection results (bounding b.ox and 1D pose).
Multi-layer architecture eformable sU wireirame mode L. = Z v;; log (1—|—)\N(Xj; i, O',Z;j)) . Subsequent second-layer results are given for detected
e Trained on 3D CAD data v 1=1 instances.
o . . . e L, : detection scores for the visible parts, Full < 80% < 60%
] 2 Explicit occluder representation
' - p p dataset visibility | visibility

avg shape in 2D bounding box - - -

occlusion-agnostic 3D model 79.5% 76.7% 75.6%

e [, :fixed likelihood for parts occluded by mask,

First layer: localize objects coarsely in 2D e [ .:agreement of parts with detected w/o configurations (ours) 84.4% 82.6% 80.1%
® Spatlally Contiguous sets of parts called part ® o hidden occlusion state given Shape, pOSe, Part-level occlusion prediction (percent correctly classified parts)
configurations. e Enumerate exhaustive set of discrete occluder and occlusion mask_

e Single component DPM detector trained for each masks (288 masks in our tests)
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dataset visibility | visibility

part configuration (118 detectors in our tests) ® Block the view onto a spatially connected region Inference T — 32.0% 3369 39,79
. avg shape in ounding box 0% 6% 1%
. . . - of the object
® Part configuration detections vote for full object | : e Model-driven, smoothing-based optimization occlusion-agnostic 3D model | 80.0% 75.6% | 74.5%
bounding box, coarse pose, and part locations. e Neighborhood between masks: rank order w.r.t. Leordeanu&Hebert, 2008] /0 configurations (ours) YT 30,0 =587
. - - Hamming distance ) . .
Second layer: detailed 3D reasoning J - | e Start from multiple randomly perturbed w/ configurations (ours) 82.7% 80.7% | 83.5%
¢ Random forest based part detection * Sample masks and set part visibility accordingly initializations, maintain multiple hypotheses.

Part localization accuracy (percent correctly localized parts)

e Deformable model matching, occluder reasoning



